The Challenge

The brain is a fascinatingly complex and delicate system of biomolecules, cells, and dynamic interactions that must be carefully maintained to support human health. When this balance is disrupted, disease can arise. Neurodegenerative dementias including Alzheimer’s disease are highly prevalent and profoundly devastating, yet remain largely untreatable or incurable.

Our Approach

We engineer nano-tools and neuro-models to uncover mechanisms of neurodegenerative disease and intervene to halt—and even reverse—disease progression. A particular emphasis of our work is on the blood–brain barrier (BBB), the vascular interface that serves as the molecular gateway into the brain. We leverage human induced pluripotent stem cells (iPSCs) to build 3D cellular systems that recapitulate human brain properties and pathologies. In parallel, we design nanoparticles to report on real-time neurochemical processes, enabling unprecedented access to dynamic and spatially resolved biomolecular phenomena, and to modulate disease states. By integrating advanced human brain tissue models with rationally designed nanotechnologies, we aim to generate fundamental insights and tools that translate into meaningful impacts for human health.

We apply chemical engineering principles to pursue the following research thrusts:

Building 3D human BBB models to investigate brain transport phenomena

Elucidating fundamental nano-bio interactions to establish and implement nano-tool design principles

Interrogating mechanisms of neurodegeneration to identify and leverage nodes for intervention